


Various tools are available to “downscale’
regional and local climate change informatior
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“Nested” Regional Climate Modeling

Motivation: The resolution of GCMs
IS still too coarse to capture regional
and local climate processes

Technique:A “Regional Climate
Model” (RCM) is “nested” within a
GCM in order to locally increase the
model resolution.

— Initial conditions (IC) and lateral
boundary conditions (LBC) for
the RCM are obtained from the
GCM (“One-way Nesting”) or
analyses of observations.

Strategy: The GCM simulates the
response of the general circulation to
the large scale forcings, the RCM
simulates the effect of sub-GCM-grid
scale forcings and provides fine
scale regional information

— Technique borrowed from NWP
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Some key projects and literature

* Review papers: Giorgi and Mearns (1991),
McGregor (1997), Giorgi and Mearns (1999),
Giorgi et al. (IPCC 2001), Leung et al. (2003),
Mearns et al. (2003), Wang et al. (2004), Giorgi
(2006), Laprise (2007)

* European projects: PRUDENCE, AMMA,
ENSEMBLES, CECILIA, CLARIS, ACQWA

* Intercomparison projects: PIRCS, RMIP,
NARCCAP, NEWBALTIC, ARCMIP,
PLATIN,ARC, NAMAP, QUIRCS, Transferabllity

« Special issues: JGR 1999; JMSJ 2004; TAC
2006; CC 2007; MAP 2004, 2008; CCH 2006;
MET.-ZEIT. 2008






Dynamical Downscaling

Generation of small scales by a
high-resolution RCM
driven by low-resolution GCM data
(900 hPa specific humidity)

Large scales Short scales

From Laprise et al. (2007)



RCM simulation of precipitation at different
resolutions over the Alps (1960-1990)

Mean annual precipitation (mm/day)

From Christensen et al. 2005



The added value of RCMs

Topographic forcing

(a) 300km GCM: 1979-83 {(b) 50km RCM: 1979-83
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(a) Mean prec. in DJF, CRU, mm/day (a) Mean prec. 61-90 in DJF, FvGCM, cntrl, mm/day
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OBSERVATIONS

Simulation of east Asia monsoon
precipitation by GCMs has been
traditionally very difficult

(Mean annual precipitation is shown;

Gao et al. 2006)
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Simulation of mean

§ precipitation for an
all-Africa domain
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Simulation of seasona
precipitation for an
all-Africa domain
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ERA-Interim ReqcM  Simulation of interannual
| B el Variability for an
| | | all-Africa domain
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Surface winds in a coupled regional RCM for the Mediterranean
30 km resolution, 1960-1990, ERA40 LBC (Artale et al. 2009)

Wind over the sea: year 2000
Stand-alone, Coupled, ERA40, QuickSCAT
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Do high resolution forcings affect the
climate change signal? Topography

DJF Precipitation change (%)- dx=20 km
A2 (2071-2100) — Control (1961-1990) (Gao et al. 2006)

(a) Mean precipitation change, A2—Reference, DJF, %




Do high resolution forcings affect the

climate change signal? Coastlines
Summer temperature change, 2080s, A2

Global climate model Regional climate model
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Temperature (°C)

(Courtesy of R. Jones)



Do high resolution forcings affect the
climate change signal? Aerosols
Effect of aerosols on

temperature in China ’b -
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Regional Climate Models: “State of the art”

« Many RCMs today available, some of them “portable” and
used by wide communities (e.g. RegCM, PRECIS, RSM, WRF)

 Grid spacing of 10-30 km (sub-10 km for some models);

« Upgrade to non-hydrostatic, cloud-resolving frameworks in
order to go to sub-10 km resolutions

» Decadal to centennial simulations the “accepted standard”
 Virtually all regions of the World have been simulated
« Encouraging results from some two-way nested experiments

« Several RCM coupling efforts under way, including
atmosphere, ocean, aerosol, and biosphere components

« \Wide range of applications

— Process studies, paleoclimate, climate chanqge, seasonal prediction,
Impacts, climate-aerosol interactions, air-sea interactions, land-
atmosphere feedbacks




The WCRP
COordinated Regional climate
Downscaling-EXperiment

CORDEX



There are many sources of uncertainty to

regional climate change projection

Incoming
solar radiation

Natural
forcings

Regional

Impacts and climate
human response change
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COq emissions (Gt C)

Regional Climate Change “Hyper-Matrix Framework” (HMF)
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CORDEX: COordinated Regional

climate Downscaling EXperiment

« Task Force on Regional Climate Downscaling
(TFRCD)

— Evaluate and possibly improve different regional
downscaling techniqgues (Model Evaluation
Framework, AMIP-like)

— Design a common framework for the next
generation RCD-based climate change projections
for input to impact/adaptation work (Model
Projection Framework, CMIP-like)

— Facilitate the engagement of the end-user
community and the scientific community from
developing countries



The CORDEX Framework
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CORDEX time slices

o
= - ——— = - >
= Far future <’
(D) _ _
Q < >
-
) Near future
I_ < >
©
o Reference
Q 4 >
@)
Full transient period
1950 1980 2010 2040 2070 2100

Time



CORDEX Phase | experiment design

Model Evaluation Climate Projection
Framework Framework

Multlple reglons but initial focus on Africa

ERA-Interim BC RCP4.5, RCP8.5
1989-2007

l / Multiple AOGCMs
Regional Analysis 1951-2100
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Some final considerations

Regional climate modeling (or more generally
downscaling) should not be viewed as alternative to
global high resolution modeling, but as complimentary

RCMs are downscaling tools, so are affected by the
forcing fields. It should not be asked of them more
than they can do.

RCMs and other downscaling techniques can be
valuable tools to study regional processes and
Interface with the end-user community

RCMs can enlarge the modeling community and as
such have an important “educational” role

CORDEX will provide an important benchmark
framework for the downscaling community.
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Climmate simulation segment of the uncertainty cascade

Global Climate Change Simulation
AOGCM, Radiative Forcing
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Cascade of uncertainty in climmate change projection
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Simulation of extreme precipitation
Smmer 1993 Flood N | mer 1993 Iood

Summer 1988 Drought
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